This is default featured post 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

Tuesday 23 August 2011


Thursday 11 August 2011

Hybrid Solar System Makes Rooftop Hydrogen

While roofs across the world sport photovoltaic solar panels to convert sunlight into electricity, a Duke University engineer believes a novel hybrid system can wring even more useful energy out of the sun's rays.

This is the hybrid system schematic. (Credit: Nico Hotz)
Instead of systems based on standard solar panels, Duke engineer Nico Hotz proposes a hybrid option in which sunlight heats a combination of water and methanol in a maze of glass tubes on a rooftop. After two catalytic reactions, the system produces hydrogen much more efficiently than current technology without significant impurities. The resulting hydrogen can be stored and used on demand in fuel cells.
For his analysis, Hotz compared the hybrid system to three different technologies in terms of their exergetic performance. Exergy is a way of describing how much of a given quantity of energy can theoretically be converted to useful work.
"The hybrid system achieved exergetic efficiencies of 28.5 percent in the summer and 18.5 percent in the winter, compared to 5 to 15 percent for the conventional systems in the summer, and 2.5 to 5 percent in the winter," said Hotz, assistant professor of mechanical engineering and materials science at Duke's Pratt School of Engineering.
The paper describing the results of Hotz's analysis was named the top paper during the ASME Energy Sustainability Fuel Cell 2011 conference in Washington, D.C. Hotz recently joined the Duke faculty after completing post-graduate work at the University of California-Berkeley, where he analyzed a model of the new system. He is currently constructing one of the systems at Duke to test whether or not the theoretical efficiencies are born out experimentally.
Hotz's comparisons took place during the months of July and February in order to measure each system's performance during summer and winter months.
Like other solar-based systems, the hybrid system begins with the collection of sunlight. Then things get different. While the hybrid device might look like a traditional solar collector from the distance, it is actually a series of copper tubes coated with a thin layer of aluminum and aluminum oxide and partly filled with catalytic nanoparticles. A combination of water and methanol flows through the tubes, which are sealed in a vacuum.
"This set-up allows up to 95 percent of the sunlight to be absorbed with very little being lost as heat to the surroundings," Hotz said. "This is crucial because it permits us to achieve temperatures of well over 200 degrees Celsius within the tubes. By comparison, a standard solar collector can only heat water between 60 and 70 degrees Celsius."
Once the evaporated liquid achieves these higher temperatures, tiny amounts of a catalyst are added, which produces hydrogen. This combination of high temperature and added catalysts produces hydrogen very efficiently, Hotz said. The resulting hydrogen can then be immediately directed to a fuel cell to provide electricity to a building during the day, or compressed and stored in a tank to provide power later.
The three systems examined in the analysis were the standard photovoltaic cell which converts sunlight directly into electricity to then split water electrolytically into hydrogen and oxygen; a photocatalytic system producing hydrogen similar to Hotz's system, but simpler and not mature yet; and a system in which photovoltaic cells turn sunlight into electricity which is then stored in different types of batteries (with lithium ion being the most efficient).
"We performed a cost analysis and found that the hybrid solar-methanol is the least expensive solution, considering the total installation costs of $7,900 if designed to fulfill the requirements in summer, although this is still much more expensive than a conventional fossil fuel-fed generator," Hotz said.
Costs and efficiencies of systems can vary widely depending on location -- since the roof-mounted collectors that could provide all the building's needs in summer might not be enough for winter. A rooftop system large enough to supply all of a winter's electrical needs would produce more energy than needed in summer, so the owner could decide to shut down portions of the rooftop structure or, if possible, sell excess energy back to the grid.
"The installation costs per year including the fuel costs, and the price per amount of electricity produced, however showed that the (hybrid) solar scenarios can compete with the fossil fuel-based system to some degree," Hotz said. 'In summer, the first and third scenarios, as well as the hybrid system, are cheaper than a propane- or diesel-combusting generator."
This could be an important consideration, especially if a structure is to be located in a remote area where traditional forms of energy would be too difficult or expensive to obtain.
Hotz's research was supported by the Swiss National Science Fund. Joining him in the study were UC-Berkeley's Heng Pan and Costas Grigoropoulos, as well as Seung H. Ko of the Korea Advanced Institute of Science and Technology, Daejon.

Polar Dinosaur Tracks Open New Trail to Past


Polar Dinosaur Tracks Open New Trail to Past

Paleontologists have discovered a group of more than 20 polar dinosaur tracks on the coast of Victoria, Australia, offering a rare glimpse into animal behavior during the last period of pronounced global warming, about 105 million years ago.

Photo of the tracks. (Credit: Anthony Martin)
The discovery, reported in the journalAlcheringa, is the largest and best collection of polar dinosaur tracks ever found in the Southern Hemisphere.
"These tracks provide us with a direct indicator of how these dinosaurs were interacting with the polar ecosystems, during an important time in geological history," says Emory paleontologist Anthony Martin, who led the research. Martin is an expert in trace fossils, which include tracks, trails, burrows, cocoons and nests.
The three-toed tracks are preserved on two sandstone blocks from the Early Cretaceous Period. They appear to belong to three different sizes of small theropods -- a group of bipedal, mostly carnivorous dinosaurs whose descendants include modern birds. Photos of the tracks, above and below, by Anthony Martin.
The research team also included Thomas Rich, from the Museum Victoria; Michael Hall and Patricia Vickers-Rich, both from the School of Geosciences at Monash University in Victoria; and Gonzalo Vazquez-Prokopec, an ecologist and expert in spatial analysis from Emory's Department of Environmental Studies.
The tracks were found on the rocky shoreline of remote Milanesia Beach, in Otways National Park. This area, west of Melbourne, is known for energetic surf and rugged coastal cliffs, consisting of layers of sediment accumulated over millions of years. Riddled with fractures and pounded by waves and wind, the cliffs occasionally shed large chunks of rock, such as those containing the dinosaur tracks.
One sandstone block has about 15 tracks, including three consecutive footprints made by the smallest of the theropods, estimated to be the size of a chicken. Martin spotted this first known dinosaur trackway of Victoria last June 14, around noon. He was on the lookout, since he had earlier noticed ripple marks and trace fossils of what looked like insect burrows in piles of fallen rock.
"The ripples and burrows indicate a floodplain, which is the most likely area to find polar dinosaur tracks," Martin explains. The second block containing tracks was spotted about three hours later by Greg Denney, a local volunteer who accompanied Martin and Rich on that day's expedition. That block had similar characteristics to the first one, and included eight tracks. The tracks show what appear to be theropods ranging in size from a chicken to a large crane.
"We believe that the two blocks were from the same rock layer, and the same surface, that the dinosaurs were walking on," Martin says.
The small, medium and large tracks may have been made by three different species, Martin says. "They could also belong to two genders and a juvenile of one species -- a little dinosaur family -- but that's purely speculative," he adds.
The Victoria Coast marks the seam where Australia was once joined to Antarctica. During that era, about 115-105 million years ago, the dinosaurs roamed in prolonged polar darkness. Earth's average temperature was 68 degrees Fahrenheit -- just 10 degrees warmer than today -- and the spring thaws would cause torrential flooding in the river valleys.
The dinosaur tracks were probably made during the summer, Martin says. "The ground would have been frozen in the winter, and in order for the waters to subside so that animals could walk across the floodplain, it would have to be later in the season," he explains.
Lower Cretaceous strata of Victoria have yielded the best-documented assemblage of polar dinosaur bones in the world. Few dinosaur tracks, however, have been found.
In the February 2006, Martin found the first known carnivorous dinosaur track in Victoria, at a coastal site known as Dinosaur Dreaming.
In May 2006, during a hike to another remote site near Milanesia Beach, he discovered the first trace fossil of a dinosaur burrow in Australia. That find came on the heels of Martin's co-discovery of the first known dinosaur burrow and burrowing dinosaur, in Montana. The two discoveries suggest that burrowing behaviors were shared by dinosaurs of different species, in different hemispheres, and spanned millions of years during the Cretaceous Period.

New Eruption Discovered at Undersea Volcano, After Successfully Forecasting the Event


New Eruption Discovered at Undersea Volcano, After Successfully Forecasting the Event

A team of scientists just discovered a new eruption of Axial Seamount, an undersea volcano located about 250 miles off the Oregon coast -- and one of the most active and intensely studied seamounts in the world.

The manipulator arm of the ROV Jason prepares to sample the new lava flow that erupted in April 2011 at Axial Seamount, located off the Oregon coast. (Credit: Photo courtesy of Bill Chadwick, Oregon State University; Copyright Woods Hole Oceanographic Institution)
What makes the event so intriguing is that the scientists had forecast the eruption starting five years ago -- the first successful forecast of an undersea volcano.
Bill Chadwick, an Oregon State University geologist, and Scott Nooner, of Columbia University, have been monitoring Axial Seamount for more than a decade, and in 2006 published a paper in the Journal of Volcanology and Geothermal Research in which they forecast that Axial would erupt before the year 2014. Their forecast was based on a series of seafloor pressure measurements that indicated the volcano was inflating.
"Volcanoes are notoriously difficult to forecast and much less is known about undersea volcanoes than those on land, so the ability to monitor Axial Seamount, and determine that it was on a path toward an impending eruption is pretty exciting," said Chadwick, who was chief scientist on the recent expedition, which was jointly funded by the National Oceanic and Atmospheric Administration and the National Science Foundation.
Axial last erupted in 1998 and Chadwick, Nooner and colleagues have monitored it ever since. They used precise bottom pressure sensors -- the same instruments used to detect tsunamis in the deep ocean -- to measure vertical movements of the floor of the caldera much like scientists would use GPS on land to measure movements of the ground. They discovered that the volcano was gradually inflating at the rate of 15 centimeters (six inches) a year, indicating that magma was rising and accumulating under the volcano summit.
When Axial erupted in 1998, the floor of the caldera suddenly subsided or deflated by 3.2 meters (10.5 feet) as magma was removed from underground to erupt at the surface. The scientists estimated that the volcano would be ready to erupt again when re-inflation pushed the caldera floor back up to its 1998 level.
"Forecasting the eruption of most land volcanoes is normally very difficult at best and the behavior of most is complex and variable," said Nooner, who is affiliated with the Lamont-Doherty Earth Observatory. "We now have evidence, however, that Axial Seamount behaves in a more predictable way than many other volcanoes -- likely due to its robust magma supply coupled with its thin crust, and its location on a mid-ocean ridge spreading center.
"It is now the only volcano on the seafloor whose surface deformation has been continuously monitored throughout an entire eruption cycle," Nooner added.
The discovery of the new eruption came on July 28, when Chadwick, Nooner and University of Washington colleagues Dave Butterfield and Marvin Lilley led an expedition to Axial aboard the R/V Atlantis, operated by the Woods Hole Oceanographic Institution. Using Jason, a remotely operated robotic vehicle (ROV), they discovered a new lava flow on the seafloor that was not present a year ago.
"It's funny," Chadwick said. "When we first arrived on the seafloor, we thought we were in the wrong place because it looked so completely different. We couldn't find our markers or monitoring instruments or other distinctive features on the bottom. Once we figured out that an eruption had happened, we were pretty excited.
"When eruptions like this occur, a huge amount of heat comes out of the seafloor, the chemistry of seafloor hot springs is changed, and pre-existing vent biological communities are destroyed and new ones form," Chadwick added. "Some species are only found right after eruptions, so it is a unique opportunity to study them."
The first Jason ROV dive of the expedition targeted a field of "black smoker" hot springs on the western side of the caldera, beyond the reach of the new lava flows. Butterfield has been tracking the chemistry and microbiology of hot springs around the caldera since the 1998 eruption.
"The hot springs on the west side did not appear to be significantly disturbed, but the seawater within the caldera was much murkier than usual," Butterfield said, "and that meant something unusual was happening. When we saw the 'Snowblower' vents blasting out huge volumes of white floc and cloudy water on the next ROV dive, it was clear that the after-effects of the eruption were still going strong. This increased output seems to be associated with cooling of the lava flows and may last for a few months or up to a year."
The scientists will examine the chemistry of the vent water and work with Julie Huber of the Marine Biological Laboratory to analyze DNA and RNA of the microbes in the samples.
The scientists recovered seafloor instruments, including two bottom pressure recorders and two ocean-bottom hydrophones, which showed that the eruption took place on April 6 of this year. A third hydrophone was found buried in the new lava flows.
"So far, it is hard to tell the full scope of the eruption because we discovered it near the end of the expedition," said Chadwick, who works out of OSU's Hatfield Marine Science Center in Newport. "But it looks like it might be at least three times bigger than the 1998 eruption."
The lava flow from the 2011 eruptions was at least two kilometers (1.2 miles) wide, the scientists noted.
"Five years ago, these scientists forecast this eruption, which has resulted in millions of square meters of new lava flows on the seafloor," said Barbara Ransom, program director in the National Science Foundation's Division of Ocean Sciences. "The technological advances that allow this research to happen will lead to a new understanding of submarine volcanoes, and of any related hazards."
The bottom-anchored instruments documented hundreds of tiny earthquakes during the volcanic eruption, but land-based seismic monitors and the Sound Surveillance System (SOSUS) hydrophone array operated by the U.S. Navy only detected a handful of them on the day of the eruption because many components of the hydrophone system are offline.
"Because the earthquakes detected back in April at a distance from the volcano were so few and relatively small, we did not believe there was an eruption," said Bob Dziak, an OSU marine geologist who monitors the SOSUS array. "That is why discovering the eruption at sea last week was such a surprise." Both Dziak and Chadwick are affiliated with the Cooperative Institute for Marine Resource Studies -- a joint NOAA/Oregon State University institute.
This latest Axial eruption caused the caldera floor to subside by more than two meters (six feet). The scientists will be measuring the rate of magma inflation over the next few years to see if they can successfully forecast the next event.
"The acid test in science -- whether or not you understand a process in nature -- is to try to predict what will happen based on your observations," Chadwick said. "We have done this and it is extremely satisfying that we were successful. Now we can build on that knowledge and look to apply it to other undersea volcanoes -- and perhaps even volcanoes on land."

Study Builds On Plausible Scenario for Origin of Life On Earth


Study Builds On Plausible Scenario for Origin of Life On Earth

A relatively simple combination of naturally occurring sugars and amino acids offers a plausible route to the building blocks of life, according to a paper published in Nature Chemistry.

The natural enantiomer of the RNA precursor molecules formed a crystal structure visible to the naked eye. (Credit: Image courtesy of University of California - Merced)
The study shows how the precursors to RNA could have formed on Earth before any life existed. It was authored by Jason E. Hein, Eric Tse and Donna G. Blackmond, a team of researchers with the Scripps Research Institute. Hein is now a chemistry professor with University of California, Merced.
Biological molecules, such as RNA and proteins, can exist in either a natural or unnatural form, called enantiomers. By studying the chemical reactions carefully, the research team found that it was possible to generate only the natural form of the necessary RNA precursors by including simple amino acids.
"These amino acids changed how the reactions work and allowed only the naturally occurring RNA precursors to be generated in a stable form," said Hein. "In the end, we showed that an amazingly simple result emerged from some very complex and interconnected chemistry."
The natural enantiomer of the RNA precursor molecules formed a crystal structure visible to the naked eye. The crystals are stable and avoid normal chemical breakdown. They can exist until the conditions are right for them to change into RNA.
The study was led by Blackmond and builds on the work of John D. Sutherland and Matthew W. Powner published in 2009 and covered by outlets such as The New York Times and Wired. Sutherland is a chemist with Cambridge's Medical Research Council Laboratory of Molecular Biology. Powner is a post-doctoral scholar with Harvard University.

Exotic Quantum Crystal Discovered: Researchers Discover Novel State of Crystal Matter

Nature knows two opposite types of solids: one that emerges upon compression from a liquid and a second that appears if the pressure on a liquid is reduced. While the former is typical for substances in our everyday life the latter occurs for example in a dense quantum liquid of electrons (such as in metals) or ions (in exotic white dwarf or neutron stars).

Density distribution of the quantum particles (excitons) in the plane of the quantum well. Yellow color corresponds to high density, red to lower, green to zero. From top left to bottom right the density is increased at constant temperature. (Credit: Michael Bonitz, ITAP, CAU Kiel)
Now it has been shown that there exists yet a third form of matter that inherits both of these properties. This unusual behaviour has been predicted to exist in crystals of excitons -- hydrogen atom-like bound states of electrons and holes -- in a semiconductor quantum well placed in a strong electric field.
A team from Kiel University (Germany) consisting of Dr. Jens Bönning, Privatdozent Alexei Filinov and Prof. Michael Bonitz has performed extensive accurate computer simulations that shed light on the mysterious properties of this material.
The results appear in the current issue of Physical Review B. There the authors present a simple explanation for the coexistence of the two seemingly contradicting melting behaviours.
The secret lies in the character of the forces acting between two excitons: at low pressure excitons repel each other via a dipole force and form a quantum liquid. Upon compression this fluid freezes into an exciton crystal. Further compression brings two excitons so close together that the quantum wave nature of their constituents (electrons and holes) starts to weaken the forces. As a consequence, further compression leads to an increasing overlap of the exciton quantum waves that is no longer balanced by the inter-exciton repulsion, and the crystal melts again.
The researchers have made precise predictions where to search for this exotic crystal of excitons (particularly well suited are zinc selenide or gallium arsenide quantum wells) -- it is now up to the experimentalists to find this new state of matter.

Deep Recycling in Earth Faster Than Thought

The recycling of Earth's crust in volcanoes happens much faster than scientists have previously assumed. Rock of the oceanic crust, which sinks deep into the earth due to the movement of tectonic plates, reemerges through volcanic eruptions after around 500 million years. Researchers from the Max Planck Institute for Chemistry in Mainz obtained this result using volcanic rock samples. Previously, geologists thought this process would take about two billion years.

These are olivine crystals from Mauna Loa volcano, Hawaii, with a width of less than 1 mm. The brown ovals are solidified, glassy inclusions trapped as droplets of melt by the growing olivine crystal. They contain strontium isotope ratios which are inherited from 500-million-year-old seawater. (Credit: Sobolev, Max Planck Institute for Chemistry.)
Virtually all of the ocean islands are volcanoes. Several of them, such as Hawaii, originate from the lowest part of the mantle. This geological process is similar to the movement of coloured liquids in a lava lamp: hot rock rises in cylindrical columns, the so-called mantle plumes, from a depth of nearly 3000 kilometres. Near the surface, it melts, because the pressure is reduced, and forms volcanoes. The plume originates from former ocean crust which early in Earth's history sank to the bottom of the mantle. Previously, scientists had assumed that this recycling took about two billion years.
The chemical analysis of tiny glassy inclusions in olivine crystals from basaltic lava on Mauna Loa volcano in Hawaii has now surprised geologists: the entire recycling process requires at most half a billion years, four times faster than previously thought.
The microscopically small inclusions in the volcanic rock contain trace elements originally dissolved in seawater, and this allows the recycling process to be dated. Before the old ocean crust sinks into the mantle, it soaks up seawater, which leaves tell-tale trace elements in the rock. The age is revealed by the isotopic ratio of strontium which changes with time. Strontium is a chemical element, which occurs in trace amounts in sea water. The isotopes of chemical elements have the same number of protons but different numbers of neutrons. Mainz scientists developed a special laser mass spectrometry method which allowed the detection of isotopes of strontium in extremely small quantities.
To their surprise, the Max Planck researchers found residues of sea water with an unexpected strontium isotope ratio in the samples, which suggested an age of less than 500 million years for the inclusions. Therefore the rock material forming the Hawaiian basalts must be younger.
"Apparently strontium from sea water has reached deep in the Earth's mantle, and reemerged after only half a billion years, in Hawaiian volcano lavas," says Klaus Peter Jochum, co-author of the publication. "This discovery was a huge surprise for us."
Another surprise for the scientists was the tremendous variation of strontium isotope ratios found in the melt inclusions in olivine from the single lava sample. "This variation is much larger than the known range for all Hawaiian lavas," says Alexander Sobolev. "This finding suggests that the mantle is far more chemically heterogeneous on a small spatial scale than we thought before." This heterogeneity is preserved only by melt inclusions but is completely obliterated in the lavas because of their complete mixing.
Sobolev, Jochum and their colleagues expect to obtain similar results for other volcanoes and therefore be able to determine the recycling age the ocean crust more precisely.

Twitter Delicious Facebook Digg Stumbleupon Favorites More